Stratifying Modular Representations of Finite Groups
نویسندگان
چکیده
We classify localising subcategories of the stable module category of a finite group that are closed under tensor product with simple (or, equivalently all) modules. One application is a proof of the telescope conjecture in this context. Others include new proofs of the tensor product theorem and of the classification of thick subcategories of the finitely generated modules which avoid the use of cyclic shifted subgroups. Along the way we establish similar classifications for differential graded modules over graded polynomial rings, and over graded exterior algebras.
منابع مشابه
Noncommutative Algebra for Part III of Serre’s Linear Representations of Finite Groups
The third part of J.-P. Serre’s book Linear Representations of Finite Groups discusses of modular representations, i.e., representations of finite groups over a field of nonzero characteristic. The aim of this work is to complement Serre’s work by introducing the reader to some noncommutative algebra used in the study of modular representations, and in particular to the theory of semisimple and...
متن کاملCartan Invariants
It is safe to say that the theory of modular representations of finite groups is not a part of the average mathematician's toolkit. Matrix representations of finite groups over the complex field, and the resulting characters (traces of matrices), occur rather widely in both pure and applied mathematics. But replacing complex numbers by elements of a finite or other field of prime characteristic...
متن کاملModular Representations of Hecke Algebras
These notes are based on a course given at the EPFL in May 2005. It is concerned with the representation theory of Hecke algebras in the non-semisimple case. We explain the role that these algebras play in the modular representation theory of finite groups of Lie type and survey the recent results which complete the classification of the simple modules. These results rely on the theory of Kazhd...
متن کاملOn the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کاملAsymptotic Results on Modular Representations of Symmetric Groups and Almost Simple Modular Group Algebras
In fact, this is a question about infinite simple groups because it is easy for G finite, and because a non-trivial normal subgroup gives rise to a non-trivial ideal different from the augmentation ideal. Also note that the problem reduces easily to the question on when the augmentation ideal is simple as a ring. The first interesting class of groups with almost simple FG was discovered in [3]....
متن کامل